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Abstract  

In this paper we present a parallel algorithm for computing the closure of a set under 
an operation. This particular type of computation appears in a variety of disguises, and 
has been used in automated theorem proving, abstract algebra, and formal logic. The 
algorithm we give here is particularly suited for shared-memory parallel computers, where 
it makes possible economies of space. Implementations of the algorithm in two application 
contexts are described and experimental results given. 

1 Introduct ion 

There are many contexts in which one wants to compute the closure of a set of objects 
under an operation. In resolution-based theorem proving, for example, the search for a 
proof of unsatisfiability for a set of clauses may be viewed as a computation of the closure 
of the original set of clauses under a resolution operation, where one terminates the com- 
putation once the closure has been found to contain the null clause. The Knuth-Bendix 
completion procedure is a closure computation in which the operation is a restricted form 
of paramodulation followed by demodulation, and one may not know in advance whether 
the computation will complete. The closure computation is also strongly related to the 
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computation of least fixed points. Details of these and other occurrences of the closure 
computation paradigm are given in Section 2 below. 

Algorithms for carrying out this computation at first glance appear serial, because 
the results of earlier computations are used in later ones. A small amount of reflection 
reveals substantial parallelism in the computation of new elements, however, except in 
pathological cases. Further study reveals a serialization bottleneck in the subsumption 
phase of the algorithm. The main point of this paper is~the presentation of a parallel 
algorithm for the closure computation that avoids this bottleneck in a way different from 
other attempts to solve this problem. In Section 3 we describe the new algorithm, prove 
its correctness, and describe how it differs from other algorithms designed to attack the 
same problem. Finally, in Section 4 we describe the implementation of this algorithm 
in two different programs to carry out computations in formal logic. We give results 
demonstrating that significant speedups can be achieved. Finally, we describe directions 
for future exploitation of the algorithm in other contexts. 

2 The Closure Computat ion  and its Significance 

The closure operation is a fundamental one. Suppose we are given a set T and an operation 
f : T x T . . .  x T --~ T. Then if S is a subset of T, we define the closure CI(S, f) as: 

CI(S,f)=('~{ R [ S C R a n d  f ( R x R . . . x R ) c R }  

In other words, the closure of S is the smallest subset of T that contains S and everything 
in T that can be obtained from S by repeatedly applying the operation f .  Depending on 
the choice of T, S, and f ,  computing Ct(S, f) is equivalent to a variety of computations 
which on the surface appear to be quite different. We give here several examples. 

2 .1  U n s a t i s f i a b i l i t y  o f  a S e t  o f  Clauses  

One of the most familiar applications is that of proving a set of clauses unsatisfiable. In 
this case T is the set of all clauses, S is the set we wish to show unsatisfiable, and f is 
an inference rule such as binary resolution or paramodulation. (Hyperresolution gives an 
example in which the arity of f is greater than two.) 

In this case, CI(S, f) is quite likely to be infinite, and so one expects to terminate the 
computation as soon as the empty clause [] is found to be a member of CI(S, f). It is the 
potentially infinite size of CI(S, f) that makes resolution only a semi-decision procedure 
for first-order logic. Whether or not CI(S, f) is finite, it represents the set of all clauses 
deducible from S under the inference rules being used. 
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2.2 The Knuth-Bendix  Complet ion  Procedure  

The computation of a complete set of rewrite rules is similar, except in this case the 
computation will not terminate if the closure being computed does not turn out to be 
finite. One starts with an initial set S of rewrite rules, and tries to find a set P of rewrite 
rules containing S and having the unique termination property. Knuth and Bendix showed 
that P = CI(S,  f ) ,  where f is defined as paramodulation between left sides of rewrite rules, 
followed by rewriting of the resulting paramodulant. (To compute a practical complete set, 
one also applies back subsumption and back demodulation to the set being constructed, 
so that the set being computed is not exactly a closure of S, since it does not contain S 
itself. This aspect of the "closure" computation will be treated in a later paper.) 

2.3 Computing  the Size of  Certain Finite Free Semigroups 

Algebraic objects are frequently defined in terms of generators, operations, and relations. 
It may be obvious that the resulting object is finite, but there may be no clue to its size, 
even in the case of a free object (no relations). In this case the object is exactly the 
closure of the set of generators under the operation, and so the closure computation can 
be used to compute the size of the free object. 

The fact that this is a closure computation means that a theorem prover can be used 
to carry it out. This is exactly what was done in [6] to discover the size of the semigroup 
F2B2.  It has been used since then to discover the sizes of F3B2,  F2B21, and F3B21. 
All of these were new results. The computation of F3B21 was done on a parallel machine 
because it had the required 120M of memory. Parallelism was not exploited; the run took 
more than seven hours on a Sequent Symmetry. 

2.4 Computat ion  of Ackerman Constants  

One case in which it was not obvious whether a particular freely generated algebra was 
finite or infinite was that of the free De Morgan monoid generated by the monoid identity. 
De Morgan monoids are the natural algebraic counterparts of the system R of relevant 
logic (see [3] for a definition and explanation). An important step towards understand- 
ing constant De Morgan monoids--i.e, those generated from the identity alone--was the 
computation of the subdirect products thus generated of certain sets of small constant 
algebras. As reported in [9] and [11], one of these was eventually discovered to be char- 
acteristic and to have 3088 elements. The closure computation used to discover this was 
painfully slow in its serial form but parallelizes well by our method as shown below. 

2.5 Formulas of  E__, 

Another, related, closure problem arising in the theory of relevant logic is that of deter- 
mining the structure of the one-variable fragment of the sentential logic E_~ of Anderson 
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and Belnap. It is known that  with negation as well as implication infinitely many non- 
equivalent formulae can be defined in E,  but very little is known about the pure implica- 
tion fragment. A recent computational result is that  the direct product of all 4-element 
E_~ algebras can distinguish 7516 such formulae. In Section 4 we present speedup results 
for the parallelization of this computation. 

3 Algor i thms for the Closure Computat ion  

3.1 The  Sequent ia l  A lgor i thm 

Here we describe a straightforward, efficient algorithm for computing the closure. It has 
been used in countless theorem provers. 

Let S = {x l , . . . , xk}  be a finite subset o f a s e t  T. Let f : T x . . .  × T ~ T b e a n  
n-ary operation on T. The algorithm shown in Figure 1 makes use of a list L and two 
indices into L, p and q. We say that  an element x of T is new if it is not subsumed by an 
element of L. 

Initialize L[i] ~ xl, for i = 1 , . . . ,  k 
Initialize p ~-- 1, q ~-- k + 1 
While p < q do 

Foreach ( i l , . . . ,  in) such that  Vj, ij < p and 3j, ij = p 
Compute f(L[il], . . . ,  L[i,]) 
If f(L[ix],..., L[i~]) is new then 

L[q] ~ f(L[il], . . . ,  L[i=]) 
q~---q+l 

end if 
end for 
p e - - p + l  

end while 

(generate phase) 
(subsumption phase) 
(update phase) 

Figure 1: Sequential Closure Algorithm 

There are several observations to be made about this algorithm: 

The pointer p chases the pointer q; the computation completes when it catches up. 
There is no guarantee that  it will do so. This is not a severe drawback in most 
situations, since either 1) the closure is known in advance to be finite, or 2) one is 
looking for a particular element of the closure, and so will abort the search when it 
is found. 

If the algorithm does terminate, then at completion L is an ordering of CI(S, f).  
By induction on the number of times through the "While" loop, the generate phase 
can only compute elements of CI(S, f),  and as long as L is not all of CI(S, f ) ,  the 
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computation will continue, since all tuples of elements of L are eventually considered 
in the "Foreach" statement. Finally, the subsumption phase ensures that  L contains 
no duplicates. 

The restriction in the "Foreach" condition ensures that  each tuple will only be con- 
sidered once. This is critical for efficiency, since it prevents redundant calculations. 
Each time through the main loop, we consider only those elements of L up to and 
including the pth one, not all of the ones we have produced. 

Anyone reading this as a theorem-proving algorithm would ask about back sub- 
sumption and back demodulation, which use new elements of L to modify or delete 
existing ones. Note that  these operations are not admissible here by our definition 
of closure. 

3.2 V a r i a t i o n s  on  t h e  S e q u e n t i a l  A l g o r i t h m  

We take this opportunity to make some observations about the closure algorithm as it 
stands. These observations will also be true of the parallel version. 

The set-of-support strategy In the context of theorem proving, it represents an 
implementation of the set-of-support strategy[12] used in various Argonne theorem provers 
over the years. In many cases it is possible to initialize with the pointer p set to an index 
greater than 1. This is typically done when one knows that  S is an unsatisfiable set 
of clauses but that  a subset A of S is satisfiable. Then if we assign the elements of A 
to L[1] , . . . ,  L[n] and start with p ~ n + 1, under certain conditions on the inference 
rules being used we will still be computing that  part of C I ( S ,  < i n f e r e n c e  r u l e s  >) 
that  contMns the empty clause, although not the complete closure. The set A typically 
contains the axioms for a domain, together with parts of the hypotheses of the theorem 
being proved. 

Associative operations Further optimizations are possible when the function f is a 
binary operation and is associat ive .  In this case the "Foreach" condition can use the 
stronger restriction that il _< k. That is, in the generate step, the first element of the 
tuple being considered must belong to the original input set S. This greatly reduces the 
number of tuples (pairs, in this case) considered. This is illustrated in the case of the 
semigroup problem, where the operation is associative by the definition of semigroup. If 
we let x l , . . . , X k  be the original set of generators, then a general product computed by 
the algorithm is of the form (y l  " . . . "  y,.)(yT+I • . . . "  y,), where Vj, 3i with yj  = x~. Since 
the operation is associative, this same product will also be computed as yl " (y2 " . . .  • y~). 
Hence we may safely restrict ourselves to the case in which the first element of the pair 
is one of the original generators. 

Another, more general, case arises when one is computing the closure of any relation 
under the "composition" operation, which is associative. An example many are familiar 
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with~ is the ancestor relation. There are two ways to axiomatize the ancestor relation 
generated from the parent relation: 

(1) If parent(x,y) then ancestor(x,y) 
If ancestor(x,y) and ancestor(y,z) then ancestor(x,z) 

(2) If parent(x,y) then ancestor(x,y) 
If parent(x,y) and ancestor(y,z) then ancestor(x,z) 

Axiomatization ('1) may compute a specific ancestor relationship in fewer steps, but 
(2) will compute all ancestors (the closure) much more efficiently. The optimization is 
possible precisely because this is the computation of the composition operation on ordered 
pairs, which is associative. 

An even further optimization is possible when f is a binary operation which is commu- 
tative. In that  case we can impose the additional restriction in the "Foreach" condition 
that  il < i2. 

T h e  in f in i t e  case The closure computation can be generalized even more than we have 
stated. What  it turns on is the very elementary fact of recursion theory that  the closure 
of a recursively enumerable set under a recursive function is recursively enumerable. It is 
not necessary that  the set of generators be finite; we might be given not a list of them but 
just an algorithm for generating them. Nor is it necessary that  the closure computation 
should complete. A completely general form of the algorithm is given in Figure 2. 

Initialize L[1] ~ xi 
Initialize p ~ 1,q ~ 2, k ~ 2 
While p < q do 

Foreach ( i l , . . . , i n )  such that  Vj, ij < p and 3j, ij = p 
Compute f (L[ i l ] , . . . ,  L[i=]) 
If f (L[ ix l , . . . ,  L[i~]) is new then 

L[q] ~ f (L[ i l ] , . . . ,  L[i=]) 
q~---q+l 

end if 
end for 
If xk exists then 

L[q] ~ x~ 
k ~ - - k + l , q ~ - - q + l  

end if 
p ~ - - p + l  

end while 

Figure 2: Generalized Sequential Closure Algorithm 

What  we now claim is that  (regardless of whether S is finite or not) L is an enumeration 
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of the closure of S under f .  In the case that S is finite we can indeed simplify by putting 
all the xl in at the start, as in Figure 1, but this is not generally possible. 

3.3 The Parallel Algorithm 

The most obvious way to parallelize the algorithm is to parallelize one of the loops. The 
inner loop is relatively easy to parallelize but leads to a sequential bottleneck because 
processes must wait for each other to complete and synchronize for the advancement of 
the pointer p. 

A better technique is to parallelize the outer "while" loop; that is, to consider several 
values of p at once. The generate phase of the computation is not affected, since for 
l = p , p  + 1 , . . .  , p  + r < q, t h e / t h  iteration of the loop is exactly the same, whether the 
iterations are done sequentially or in parallel. The subsumption and update phases of the 
computation, however, must be changed, to protect against simultaneous updating of L 
and, more importantly, to ensure that a complete subsumption test is carried out before 
updating. A straightforward way to do this would be for each process to lock L while 
it performed the subsumption check and added newly generated unique elements to L. 
However, this would create too much of a serial bottleneck, since the subsumption phase 
of many closure computations is the most expensive. Our solution separates the tasks to 
be carried out in order to allow" for greater parallelism. 

To accomplish this, we make use of a separate list K indexed by a pointer r, which 
holds elements that have been generated and passed an "almost complete" subsumption 
test, but have not passed a final subsumption test. Carrying out the final check and 
moving such elements from list K to list L is done separately. More formally, we break 
the computation down into units of work as shown in Figure 3. It is possible to design 
the data structures that index L for fast partial subsumption testing so that the generate 
phase of Task A can go on concurrently with Task B. 

Finally, we dispatch processes that are available for work as follows: When a process 
requests work, we give it Task B if K is not empty and no other process is executing Task 
B, otherwise we assign it Task A. Thus we typically have many instances of A in progress, 
and (occasionally) at most one instance of Task B. 

There are several observations to be made about this algorithm: 

• It also computes the closure of S under f ,  by the same argument as in the sequential 
c a s e .  

• No duplicates are put in L, because updating of L is only done by Task B, of which 
there is only one instance at a time. 

• The algorithm retains most of the efficiency of the sequential algorithm, but not all. 
It remains true that no tuples are considered twice, since each instance of Task A 
uses a different value of s, so the total amount of work done in the generate phase 
is the same in both cases. The final subsumption test will duplicate work done in 
the partial subsumption test. Some of this duplication is reduced by the removal of 
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Initialize L[i] ~-- xi ,  for i = 1 , . . . ,  k 
Initialize p ~-- 1, q *-- k + 1 
Initialize K *-- e m p t y ,  r *-- 1 

Task A: 
Lock p, set s +- p, p +- p + 1, Unlock p 
Foreaeh ( i l , . . . , i ,~)  such that Vj,  ij < s and 3j, ij = s 

Compute f(L[i~],..., L[i~]) 
If f(L[i~],..., L[in]) is new then 

Lock K 
K[r] *-- f ( L [ i l ] , . . . ,  L[i~]) 
r e - r + l  
Unlock K 

end if 
end for 

Task B: 
While r > 0 

Lock K 
a ~ K [ r ] , r  ~ r -  1 
Unlock K 
If a is new then 

L[q]  ~ -  a 

q ~ q + l  
end if 

end while 

(generate phase) 
(partial subsumption phase) 

(partial update phase) 

(complete subsumption) 
(complete update) 

Figure 3: Parallel Closure Algorithm 



$6 

duplicates from K, but some of it is unavoidable. The reason this is not a severe 
problem is that most subsumed elements are removed by the partial subsumption 
check, and thus are not retested in Task B. 

• The parallelism is of large grain size, since Task A contains not only generation of 
new elements but also the bulk of the work of subsumption. The grain size can 
be increased slightly (synchronization reduced) by batching within each process the 
partial updates to K. We have not shown this in Figure 3 since it complicates the 
presentation of the algorithm. 

• Nearly all attempts to generate a new element fail. If the computation completes 
with q = Q + 1, then Q= tuples will be considered, but only Q - k new elements 
will be added. Assuming k negligibly small with respect to Q, we still have only 
approximately 1 in every Q computations resulting in updates to L. Therefore Q 
need only be on the order of 100 for the computation to be well worth parallelizing. 

By the computation above the proportion of trials which actually result in any 
updating of L is rather small. The proportion which result in updating K is usually 
larger. The question of how much larger is crucial to any account of the efficiency 
of the parallel algorithm. The serial bottleneck is avoided only if list K is at least 
close to being emptied for the last time when the computation completes. In the 
more general case of a closure computation which does not complete, or which is 
terminated for reasons other than exhaustion, K should grow slowly in comparison 
with L. Unfortunately, we have no firm theoretical results concerning the size of K, 
but our experimental results indicate that in typical cases K remains small. Most 
of the time, in fact, K is empty, and because elements from K do not have to be 
reconstructed before their second comparison with L it can be emptied again fairly 
quickly when it does become occupied. We present our speedup results as evidence of 
the degree to which the serialization problem has been overcome. Although precise 
results are hard to come by, we may at least note that in general the greater the final 
value of q the better the algorithm will parallelize, while the more processes there 
are adding to list K the greater will be the threat of a recurrence of serialization. 

• Other parallel algorithms for parallelizing this type of computation have been pre- 
sented, both of them based on message-passing rather than shared-memory models 
of parallel computation. The difference is that synchronization among processes is 
done by the sending and receiving of messages rather than by locks on shared data 
structures, which are an inherently faster synchronization mechanism. One imple- 
mentation of the semigroup computation was given in [1]. There speedups of close 
to 3 were obtained with 4 processes. The message-passing model limited the number 
of processes that were runnable because extra memory was required for duplicating 
most of the data structures. 

A more sophisticated message-passing theorem prover is presented in [4]. The tech- 
nique used there provided speedups up to 23 with 29 processes on a very large 
problem, but requires complex load-balancing decisions to be made ahead of time, 
and seems to require a large problem to outweigh the overhead of message-passing. 
The results we present in Section 4 lead us to hope that when the shared-memory 
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algorithm of Figure 3 is applied to a theorem prover, speedups will be good even on 
small problems, and the load-balancing will be automatic, because of the shared- 
memory model. 

4 E x p e r i m e n t a l  R e s u l t s  

This algorithm has first been tested in the application areas described in Sections 2.4 and 
2.5. The implementation was in C, using the Argonne monitor macro package described in 
[5] to provide a portable and relatively high-level paradigm for writing the program. The 
package provides a general dispatcher (the ASKFOR monitor) which was used to dispatch 
tasks A and (one instance at a time of) task B to however many processes were started. 
No particular process was dedicated to any particular task. The code was developed on 
a Sequent Symmetry at the Automated Reasoning Project at the Australian National 
University, and run on a larger Symmetry at Argonne National Laboratory. Results 
obtained are shown in Tables 1 and 2. 

processes time(seconds) speedup 
1 1964.43 1.00 
5 408.31 4.81 

10 222.74 8.82 
15 163.65 12.00 
20 129.85 15.13 

Table 1: Computation of Ackerman Constants 

processes time(seconds) speedup 
1 13597.26 1.00 
5 2913.37 4.67 

10 1612.07 8.43 
15 1185.83 11.47 
20 972.39 13.98 

Table 2: Computation of Formulas of E_. 

In each of these cases, an order of magnitude reduction in computing time was 
achieved. 

5 F u t u r e  W o r k  

The algorithm has so far been implemented and tested in special purpose programs for 
computing the closures of particular sets under particular operations. The next step 
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is to implement a general-purpose theorem prover using this algorithm, incorporating 
back demodulation and back subsumption. Not only will this provide a wider range of 
applicability but we will be able to compare the speed of the parallel closure computation 
using general methods with the special-purpose programs described here and with the 
message-based parMlel closure algorithms. We have begun to construct such a theorem 
prover, using OTTER[7] as a base, since it already contains many desirable features 
unrelated to parallelism. The goal is to produce a parallel version of OTTER which 
behaves identically with regard to input and output, but is capable of greatly increased 
performance on parallel machines. 
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